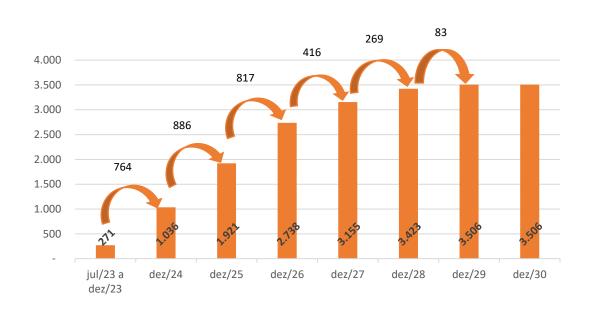

CENIG

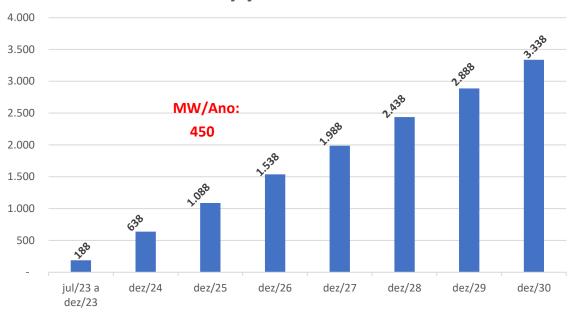
Processo de Projeção e verificado de MMGD por barramentos CEMIG Distribuição

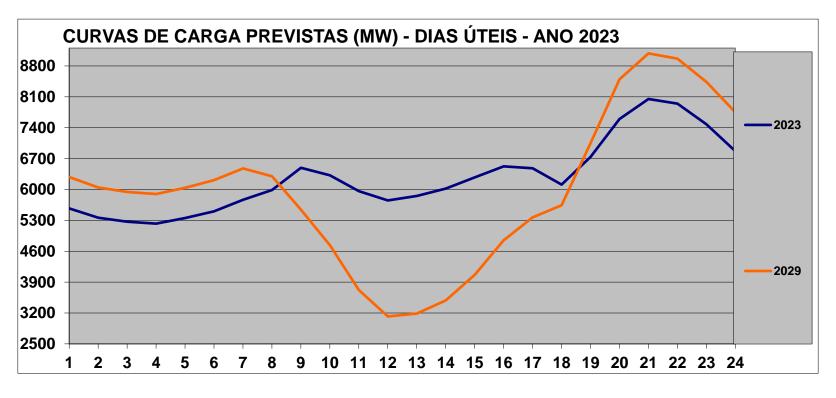
Micro e Mini GD: Histórico de Potência Instalada até JUL/23

• Total Potência Instalada MMGD em JUL/2023: 3.291 MW


	POT_INST_2023	CRESC_PROJ (2023_2030)	TOTAL_2030_MW	MW-medios (consumo)
MICRO GD	2.295	3.506	5.801	806
MINI GD	996	3.338	4.334	534
TOTAL	3.291	6.844	10.135	1.340

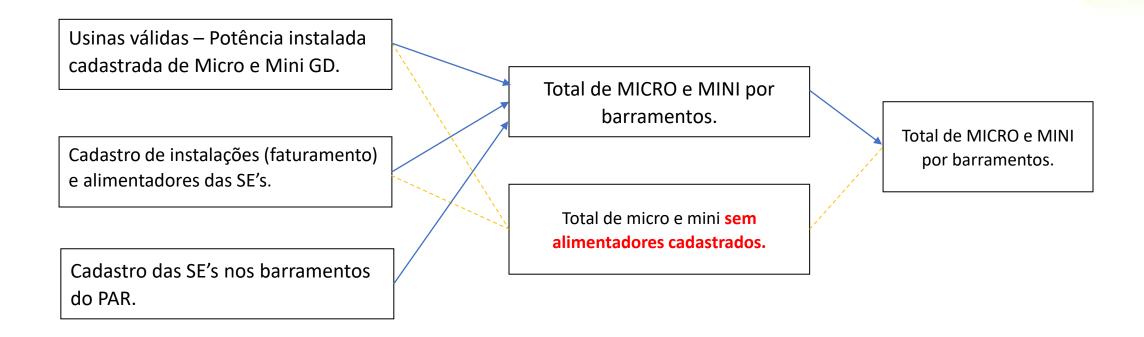
- *Desconsiderando as classes que não migrariam: Baixa Renda, irrigantes e iluminação pública.
- Total Potência Instalada MMGD em JUL/2023: 3.291 MW


Premissas de Mercado para os próximos 10 anos. *80% de migração do mercado de BT


Micro GD - Projeção de Potência Instalada MW

- Micro GD: Potencial de "migração"/instalação MMGD, aproximadamente 80% do consumo de baixa tensão.
- MINI GD: Contratos de novas usinas e orçamentos válidos.

Projeção de carga global: 70% da demanda suprida por MMGD em 2029.

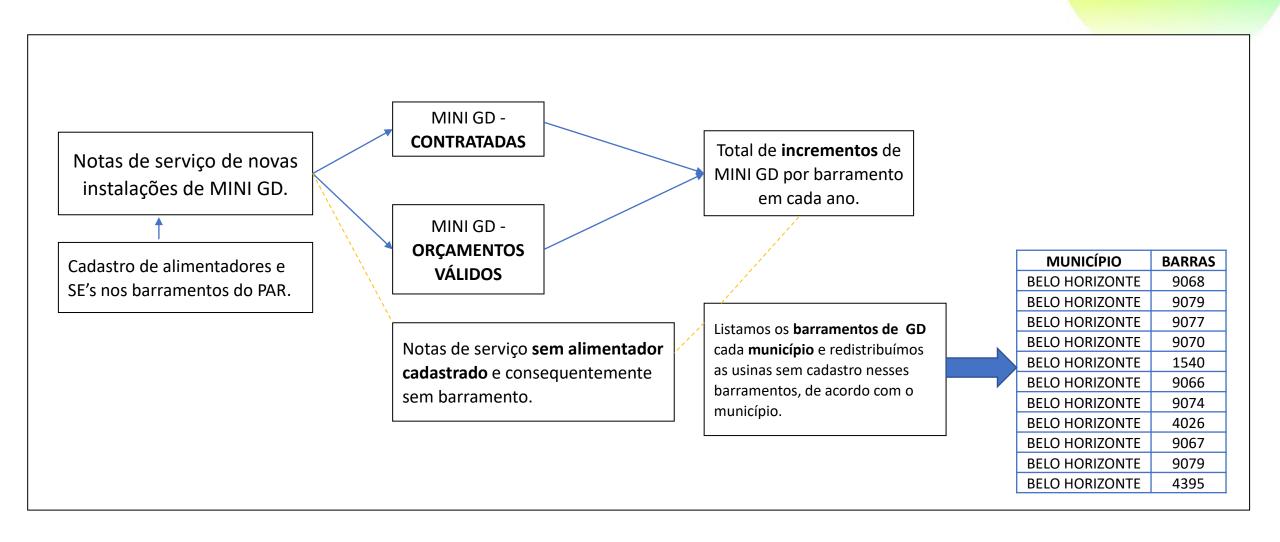


ANO	CARGA (MW)	MMGD (MW)	%	
2023	7.608	2.759	-36,26	
2029	8.555	5.920	-69,20	

Ponto de Partida: Cadastro de usinas MMGD válidas até a data de projeção.

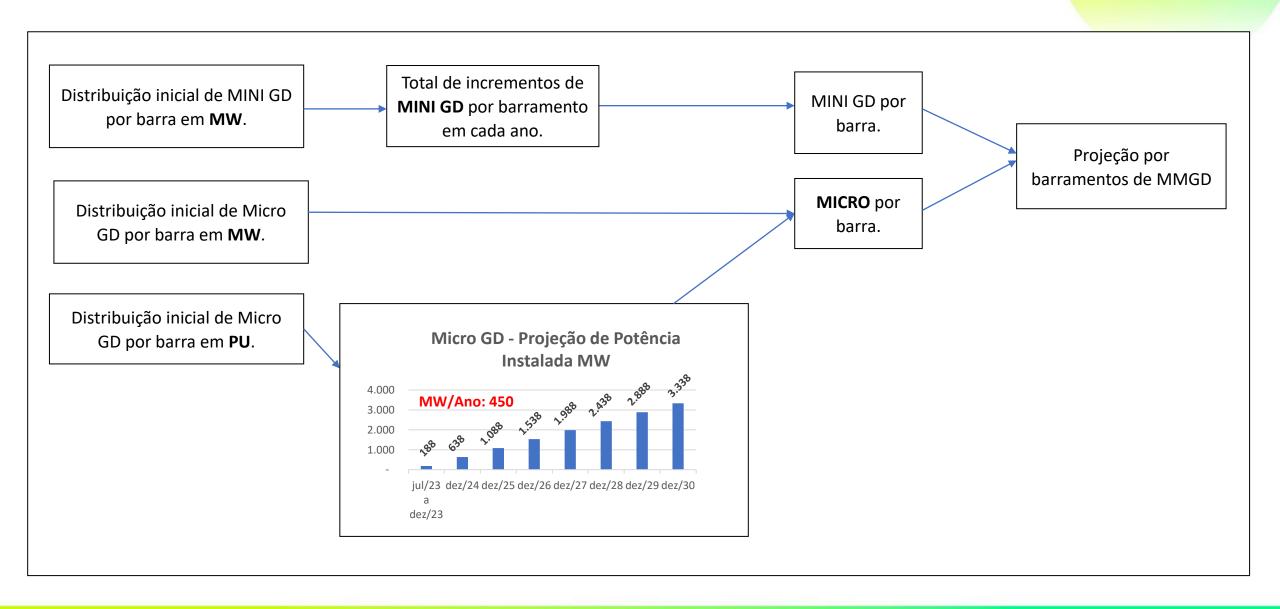
- Desafios:
- Cadastro de algumas instalações de MMGD incompleto sem a indicação do alimentador.

Ponto de Partida: Saída em PU de MICRO e MINI em cada barra



BARRA	MW_MICRO	MW_MINI	PU_MICRO	PU_MINI	PU_BARRA	*MW_TOTAL
307	19,21	1,27	0,0113	0,0023	0,0090	2.266,46
309	10,98	1,56	0,0065	0,0028	0,0055	2.266,46
318	5,51	0,10	0,0032	0,0002	0,0025	2.266,46
321	1,27	0,00	0,0007	0,0000	0,0006	2.266,46
322	19,27	4,40	0,0113	0,0078	0,0104	2.266,46
327	3,73	0,78	0,0022	0,0014	0,0020	2.266,46
337	9,74	1,36	0,0057	0,0024	0,0049	2.266,46
340	2,89	1,89	0,0017	0,0033	0,0021	2.266,46
342	18,38	13,55	0,0108	0,0240	0,0141	2.266,46

MW inicial por barramentos e valor em PU.
 *Total considerado na elaboração do PAR anterior.


Projeção por barramentos de MINI GD

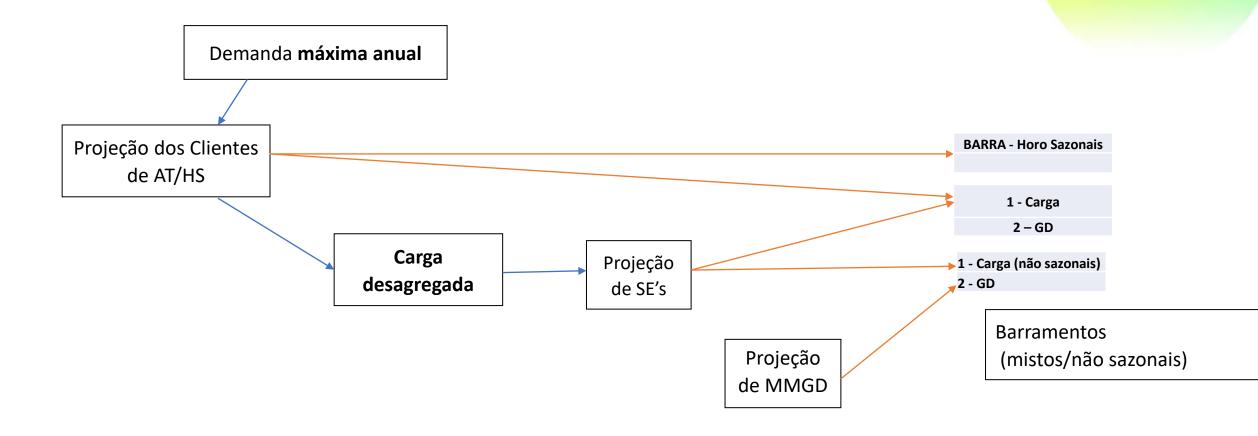
Projeção por barramentos de MICRO GD

Distribuição da potencia instalada dos orçamentos contratados :

WHEN t1.ANO_MES_ENT <= 202112	THEN 2023
WHEN t1.ANO_MES_ENT >= 202201 AND t1.ANO_MES_ENT <= 202205	THEN 2023
WHEN t1.ANO_MES_ENT >= 202206 AND t1.ANO_MES_ENT <=202212	THEN 2024
WHEN t1.ANO_MES_ENT >= 202311 AND t1.ANO_MES_ENT <= 202312	THEN 2024
WHEN t1.ANO_MES_ENT >= 202410 AND t1.ANO_MES_ENT <= 202412	THEN 2025
ELSE t1.DATA_ENTRADA	

Distribuição dos orçamentos válidos:

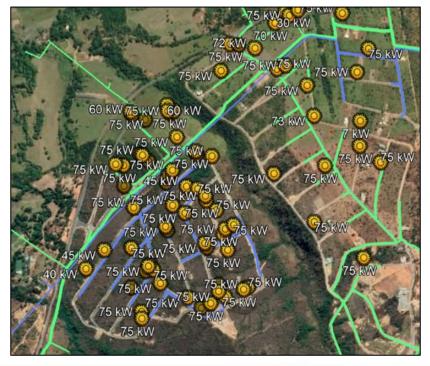
WHEN t1.ANO_MES <= 202209	THEN 2026
WHEN t1.ANO_MES = 202210	THEN 2027
WHEN t1.ANO_MES = 202211	THEN 2028
WHEN t1.ANO_MES = 202212	THEN 2029
WHEN t1.ANO_MES >= 202301 AND t1.ANO_MES <= 202302	THEN 2030
WHEN t1.ANO_MES > 202302	THEN 2031
ELSE 203112	



BARRA	2023	2024	2025	2026	2027	2028	2029
307	17,3	52,48	2,5	0	0	0	0
309	6,5	5,5	14,5	0	0,26	10,6	4,5
318	9,7	0,3	0	0	0	0	0
321	0	0	10,54	0	0	0	6,5
322	5,59	10,73	0	7,5	2,5	2,48	19,88
327	0	0	0	0	0	0	0
337	0,27	2,54	11,4	5	3,5	2,5	1,87
340	2,86	2	13,3	0	0	2,5	0
342	17,81	23,5	16,8	0	5	0	2,92

• Saída da projeção de MINI: Incremento anual em MW por barramento.

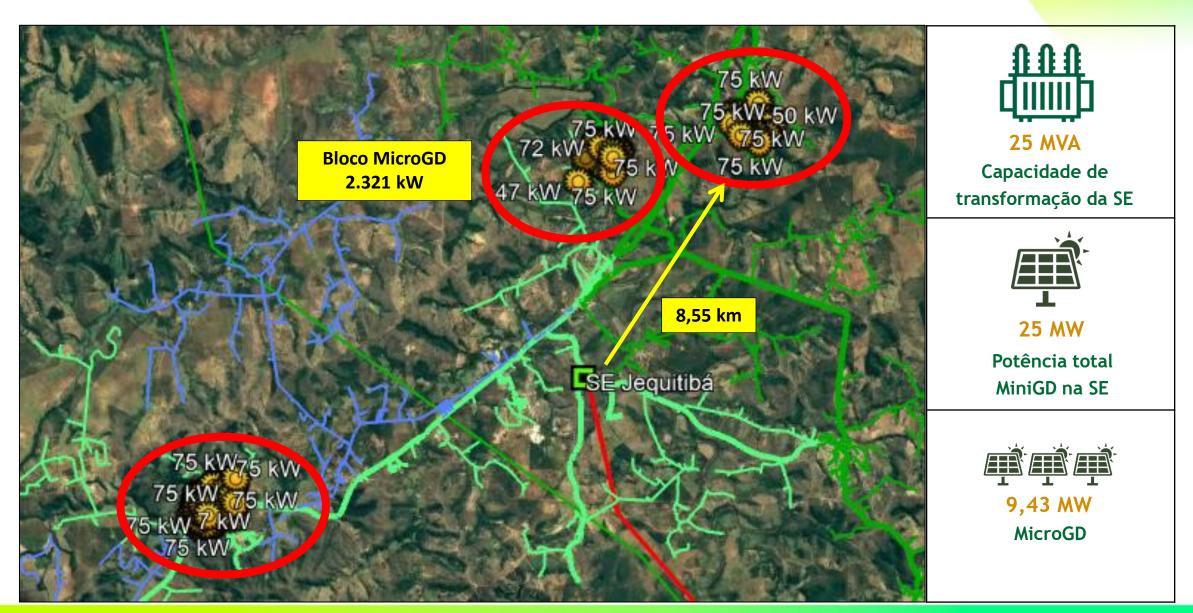
Projeção por barramentos do PAR: Composição das barras.


 Metodologia: Definição das demandas máximas anuais, distribuição dos contratos hora sazonais e expansões de clientes de AT, desagregação, proporcionalização da carga das SE's, representação da porção de carga atendida por MMGD na partição 2.

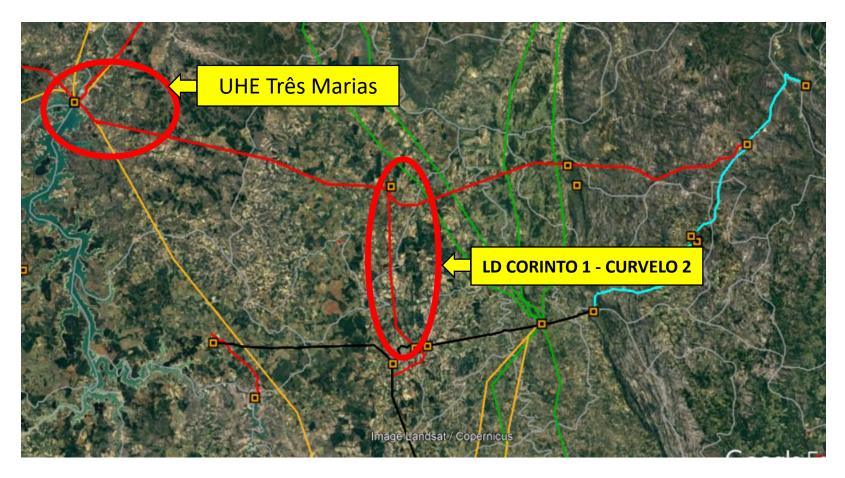
Subdivisão de Centrais Geradoras: Caso de Jequitibá

Vários casos são de plantas originalmente de mini GD que tiveram como resposta a necessidade d<mark>e vultosas</mark> obras de alta tensão para viabilizarem a conexão e se transformaram em parques de microGD remotas

- Na foto abaixo os condomínios selecionados fazem parte dos pontos críticos, onde a CEMIG D recebeu elevada quantidade de solicitações de acesso de microgeração, contribuindo com o esgotamento do sistema elétrico da região.
- Foi constatado que:
 - I. O condomínio estava sendo utilizado exclusivamente para implantação de usinas com geração até 75 kW.
 - II. Apesar de haver vários empreendimentos de geração distribuída já conectados e alguns outros em construção, outro condomínio da região apresenta também características residenciais. Porém, identificou-se possíveis casos de subdivisão de centrais geradoras, onde empresas com mesmo Quadro Societário têm usinas em processo de conexão em áreas próximas.

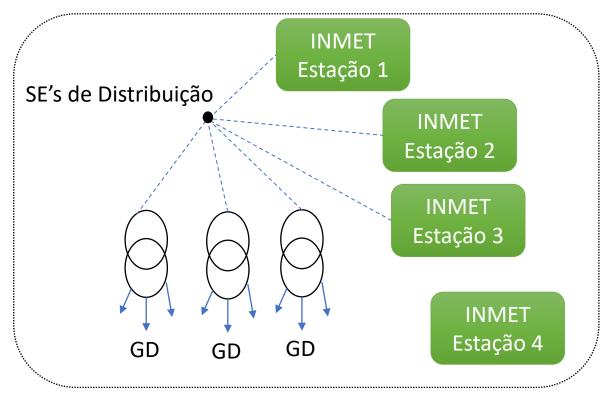


Restrição na Distribuição - Caso Jequitibá


CEMIG

- Obra disparada no PDD 2018/2022 (SE Jequitibá), 35 milhões, e energização em novembro de 2022.
- Subestação esgotada para GD, mas com previsão de esgotamento devido a consumo (carga) apenas em 2043.

Restrição na Rede Básica - Corinto1 - Três Marias



Sobrecarga nas transformações 345/289 kV e 289/138 kV da SE Três Marias, em situações de contingência simples.*

Sobrecarga na LD 138 kV Corinto – Curvelo 2

^{* 2023-}PT-0024-RO- PARECER TÉCNICO SOBRE O IMPACTO NO SISTEMA DE TRANSMISSÃO DECORRENTE DA CONEXÃO DE NOVAS PLANTAS DE GERAÇÃO DISTRIBUÍDA NA REDE DE DISTRIBUIÇÃO EM 138 kV DA CEMIG-D (ONS)

Verificado de MMGD por barramentos: Média ponderada da solarimetria de no mínimo 3 estações mais próximas, por regional

Regional 1

Obs: Nos casos em que a medição da estação é faltante ela é desconsiderada da média.

Verificado de MMGD Global (SAGIC): Desvio na relações de carga dos patamares médios.

 Observamos que a relações de carga entre os patamares médio e o PDU (referência), estavam com desvio negativo. Indicando que o verificado de MMGD ficou abaixo do esperado.

	PES DU	MED DU	LEV DU*	MIN	PES SAB	MED SAB	PES DOM	MED DOM
JAN	0,0%	-7,3%	-	-	-2,1%	-5,3%	-5,1%	-7,3%
FEV	2,1%	-5,8%	-	-	-1,7%	-5,0%	0,4%	-3,1%
MAR	5,2%	-5,1%	-	-	-2,2%	-5,2%	-0,5%	-2,4%
ABR	1,0%	-3,2%	-	-	-0,2%	3,4%	-3,6%	-0,6%

• Para corrigir essa distorção aumentamos o percentual de aproveitamento utilizado nas MMGD comerciais e residenciais para 85%.

Desafios futuros para as projeções de carga e MMGD:

- Aumento da carga e mudança do perfil de consumo com o crescimento da eletromobilidade.
- Possível diminuição dos custos de baterias, que pode viabilizar um aumento dos sistemas off grid.
- Surgimento de plantas híbridas de MINI GD fotovoltaicas e hidrogênio verde para abastecimento do mercado interno e exportação.
- Atualização das usinas existentes para painéis mais eficientes e novas tecnologias de eficientização.

CEMIG #Transformar vidas com a nossa energia.

Muito obrigado!

CEMID D:

Equipe de Carga e Demanda:

Flávio Lacerda de Morais <flavio.morais@cemig.com.br>
Daniel Pereira Campos <dpcampos@cemig.com.br>
Fabrícia Nascimento <fabricia.graca@cemig.com.br>

Equipe de Mercado:

Fernanda Nogueira<fernanda.nassis@cemig.com.br>
Danilo de Deus Mota <danilo.mota@cemig.com.br>

Equipe de Planejamento:

Michele dos Reis Pereira <michele@cemig.com.br>
Hernane Salvador Braga <hernanes@cemig.com.br>

Banco de dados:

Anderson Froes <ANDERSON.FROES@cemig.com.br>